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 Phantom reduces fine-tuning attack success to near-random

Obfuscated Architecture levels (8.49%-12.05%) while competing methods exceed

Layer Sensitivity Analysis Obfuscated Layer Training

Layer Sensitivity Analysis on VGG16 I o _ _ _ _
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"""""" *  Train obfuscation layers to
U - - 80- : Victim Layer . y Model Stealing Attack
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« Powerful adversaries can access the untrusted execution to attacks * Phantom reduces model stealing success to random baseline
environment (OS, GPU). levels (=10% for CIFAR-10/STL-10, =1% for CIFAR-100).

* Deployed DNN models return only class labels, not

System Overhead
confidence scores, to both authorized users and adversaries.
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data and uses this limited dataset to fine-tune a partially
known model (e.g., with stolen weights or architecture),

recovering functionality or improving performance.

performance among evaluated defenses.
« SGX 2.0 shifts the bottleneck from TEE computation to TEE-
GPU data transfer, comprising 50-60% of execution time.

Phantom reduces unauthorized model accuracy to near-random performance levels (e.g., ~10%
on CIFAR-10/STL-10, ~1% on CIFAR-100) while maintaining full accuracy for authorized users.
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